Today, nearly all tubes use one of two different kinds of cathode to generate electrons.
1) The thoriated filament: it is just a tungsten filament, much like that in a light bulb, except that a tiny amount of the rare metal THORIUM was added to the tungsten. When the filament is heated white-hot (about 2400 degrees Celsius), the thorium moves to the outer surface of it and emits electrons. The filament with thorium is a much better maker of electrons than the plain tungsten filament by itself. Nearly all big power tubes used in radio transmitters use thoriated filaments, as do some glass tubes used in hi-fi amps. The thoriated filament can last a VERY long time, and is very resistant to high voltages.
2) The other kind of cathode is the oxide-coated cathode or filament. This can be either just a filament coated with a mixture of barium and strontium oxides and other substances, or it can be an "indirectly heated" cathode, which is just a nickel tube with a coating of these same oxides on its outer surface and a heating filament inside. The cathode (and oxide coating) is heated orange-hot, not as hot as the thoriated filament--about 1000 degrees Celsius. These oxides are even better at making electrons than the thoriated filament. Because the oxide cathode is so efficient, it is used in nearly all smaller glass tubes. It can be damaged by very high voltages and bombardment by stray oxygen ions in the tube, however, so it is rarely used in really big power tubes.
3) Lifetime of cathodes: The lifetime of a tube is determined by the lifetime of its cathode emission. And the life of the of a cathode is dependent on the cathode temperature, the degree of vacuum in the tube, and purity of the materials in the cathode.
Tube life is sharply dependent on temperature, which means that it is dependent on filament or heater operating voltage. Operate the heater/filament too hot, and the tube will give a shortened life. Operate it too cool and life may be shortened (especially in thoriated filaments, which depend on replenishment of thorium by diffusion from within the filament wire). A few researchers have observed that the lifetime of an oxide-cathode tube can be greatly increased by operating its heater at 20% below the rated voltage. This USUALLY has very little effect on the cathode's electron emission, and might be worth experimenting with if the user wishes to increase the lifetime of a small-signal tube. (Low heater voltage is NOT recommended for power tubes, as the tube may not give the rated power output.) Operating the heater at a very low voltage has been observed to linearize some tube types-- we have not been able to verify this, so it may be another worthy experiment for an OEM or sophisticated experimenter. The average end-user is advised to use the rated heater or filament voltage--experimentation is not recommended unless the user is an experienced technician.
Oxide cathodes tend to give shorter lifetimes than thoriated filaments. Purity of materials is a big issue in making long-lived oxide cathodes--some impurities, such as silicates in the nickel tube, will cause the cathode to lose emission prematurely and "wear out". Low-cost tubes of inferior quality often wear out faster than better-quality tubes of the same type, due to impure cathodes.
Small-signal tubes almost always use oxide cathodes. Good-quality tubes of this type, if operated well within their ratings and at the correct heater voltage, can last 100,000 hours or more.
The world record for lifetime of a power tube is held by a large transmitting tetrode with a thoriated filament. It was in service in a Los Angeles radio station's transmitter for 10 years, for a total of more than 80,000 hours. When finally taken out of service, it was still functioning adequately. (The station saved it as a spare.) By comparison, a typical oxide-cathode glass power tube, such as an EL34, will last about 1500-2000 hours; and a tube with an oxide-coated filament, such as an SV300B, will last about 4000-10,000 hours. This is dependent on all the factors listed above, so different customers will observe different lifetimes.
By Eric Barbour
Information from www.vacuumtubes.net
3/19/08
Cathode
เขียนโดย
middleworm