The chief reliability problem of a tube is that the filament or cathode is slowly "poisoned" by atoms from other elements in the tube, which damage its ability to emit electrons. Trapped gases or slow gas leaks can also damage the cathode or cause plate-current runaway due to ionization of free gas molecules. Vacuum hardness and proper selection of construction materials are the major influences on tube lifetime. Depending on the material, temperature and construction, the surface material of the cathode may also diffuse onto other elements. The resistive heaters that heat the cathodes may break in a manner similar to incandescent lamp filaments, but rarely do, since they operate at much lower temperatures than lamps. The heater's failure mode, due to its positive temperature coefficient, is generally associated with the power-up period as a result of the switch-on current surge. A negative temperature coefficient device, such as a thermistor, was sometimes incorporated in the equipment heater supply to compensate.
Another important reliability problem is caused by air leakage into the tube. Usually oxygen in the air reacts chemically with the hot filament or cathode, quickly ruining it. Designers worked hard to develop tube designs that sealed reliably. This was why most tubes were constructed of glass. Metal alloys (such as Cunife and Fernico) and glasses had been developed for light bulbs that expanded and contracted in similar amounts, as temperature changed. These made it easy to construct an insulating envelope of glass, while passing connection wires through the glass to the electrodes.
When a vacuum tube is overloaded or operated past its design dissipation, its anode (plate) may glow red. In consumer equipment, a glowing plate is universally a sign of an overloaded tube and must be corrected immediately. However, some large transmitting tubes are designed to operate with their anodes at red, orange, or in rare cases, white heat.
Information from Wikipedia
Another important reliability problem is caused by air leakage into the tube. Usually oxygen in the air reacts chemically with the hot filament or cathode, quickly ruining it. Designers worked hard to develop tube designs that sealed reliably. This was why most tubes were constructed of glass. Metal alloys (such as Cunife and Fernico) and glasses had been developed for light bulbs that expanded and contracted in similar amounts, as temperature changed. These made it easy to construct an insulating envelope of glass, while passing connection wires through the glass to the electrodes.
When a vacuum tube is overloaded or operated past its design dissipation, its anode (plate) may glow red. In consumer equipment, a glowing plate is universally a sign of an overloaded tube and must be corrected immediately. However, some large transmitting tubes are designed to operate with their anodes at red, orange, or in rare cases, white heat.
Information from Wikipedia