D. What is Class A, B, AB, ultralinear, etc?
1. Class A means that the power tube conducts the same amount of current all the time, whether idling or producing full power. Class A is very inefficient with electricity but usually gives very low distortion.
There are single-ended class-A, or SE, amplifiers. They use one or more tubes in parallel, which are all in phase with each other. This is commonly used in smaller guitar amps and in exotic high-end amplifiers. Many audiophiles prefer the SE amplifier, even though it has relatively high levels of even-order distortion. Most 300B high-end amplifiers are SE. Negative feedback, which can be used to decrease the distortion of an amplifier, is felt by some people to sound inferior. Most SE amps have no feedback.
Push-pull class-A amplifiers also exist--they use two, four or more tubes (always in pairs) which are driven in opposite phase to each other. This cancels out the even-order distortion and gives very clean sound. An example of a class-A push-pull amplifier is the Vox AC-30 guitar amp. Push-pull Class A operation usually involves low plate voltages and high plate currents, compared to Class AB operation below. The high currents might tend to wear out the tube cathodes faster than in an AB amplifier.
There are two kinds of class-A operation, which can apply to single-ended or push-pull.
-Class A1 means that the grid voltage is always more negative than the cathode voltage. This gives the greatest possible linearity and is used with triodes such as the SV300B, and with audio beam tetrodes and pentodes.
-Class A2 means that the grid is driven MORE POSITIVE than the cathode for part or all of the waveform. This means the grid will draw current from the cathode and heat up. A2 is not often used with beam tetrodes, pentodes or triodes like the SV300B, especially in audio. Usually a class-A2 amplifier will use tubes with special rugged grids, such as the SV811 and SV572 series of triodes.
Class A2 also requires a special driver circuit, that can supply power to the grid.
2. Class AB applies only to push-pull amplifiers. It means that when one tube's grid is driven until its plate current cuts off (stops) completely, the other tube takes over and handles the power output. This gives greater efficiency than Class A. It also results in increased distortion, unless the amplifier is carefully designed and uses some negative feedback. There are class-AB1 and class-AB2 amplifiers; the differences are the same as were explained above--the tube's grids are not (AB1) or are (AB2) driven positive.
3. Class B applies only to push-pull amplifiers in audio; it SOMETIMES applies to RF power amplifiers with one tube. It is like Class AB, except that the tubes idle at or near zero current. This gives even greater efficiency than Class A or AB. It also results in increased distortion, unless the amplifier is carefully designed and uses some negative feedback. If careful design is not undertaken, the result may be crossover distortion, which appears at the midpoint of the output waveform and has very bad-sounding effects in audio. Most solid-state audio amplifiers use class B, because the transistors undergo less heat stress when idling.
4. Ultralinear operation was invented by David Hafler and Herbert Keroes in 1951. It uses only beam tetrodes or pentodes, and special taps on the output transformer. The taps connect to the screen grids of the tubes, causing the screens to be driven with part of the output signal. This lowers distortion considerably. It is usually seen only in hi-fi amplifiers that use power tubes such as the SV6L6GC, SV6550C, EL84 or EL34.
E. Why are different kinds of power supplies used in various tube amplifiers? Why do some use tube amplifiers? Why do some use tube rectifiers, while others use solid-state rectifiers, while still others have electronic regulation?
Tube rectifiers are still used in power supplies of some guitar amps, because the current a tube rectifier can produce varies somewhat with the load. It is quite different in response from a solid-state rectifier. Many audiophiles also prefer this classic design for much the same reasons. Also, inexpensive solid-state rectifiers can put "hash" into a power supply, because of their slow transient capability while charging and recharging a filter capacitor 50/60 times a second. Special high-speed silicon rectifiers are available at high cost. They are rarely used in products other than a few high-end amplifiers. Tube rectifiers have faster transient response than most solid-state rectifiers, also making them useful in some high-end designs.
Regulated DC plate power can be very helpful in a push-pull Class AB amplifier. Because the amp draws greatly different current when at idle and when delivering full power, a regulated supply "sags" less at full power, producing better transient response in the amplifier. It is expensive to regulate the high voltages in a tube amplifier, so it is done only in expensive top-line models. Class A amplifiers have less need for regulation since they draw nearly the same DC power at all times. It is dependent on the circuit design. The only way to see if you need an amplifier with a regulated supply is to listen to it and carefully compare it with similar amps with unregulated supplies. Regulation is almost never used in guitar amps, since the DC power "sag" causes some signal compression, which is considered part of the desired sound effect inherent to a guitar amp.
F. What are the advantages of an OTL amplifier over a conventional one with an output transformer? Should I get an OTL? What about its reliability issues?
OTL, or output-transformerless, amplifiers are special high-end products. Because it is expensive and difficult to wind an output transformer for a tube amplifier to achieve the best possible performance, some designers have chosen to eliminate the transformer altogether. Unfortunately, tubes have relatively high output impedances compared to transistors. So, tubes with large cathodes and high peak emission capability are used---in many push-pull pairs. A well-designed OTL is capable of the best audio performance available today. OTLs usually require more maintenance and greater care in use than transformer-coupled amps. In recent years, OTLs have gotten a bad reputation for unreliability. This was only a problem with some low-cost manufacturers, who have since gone out of business. A well-designed OTL can be just as reliable as a transformer-coupled amp.
G. There's all this talk about "parallel feed", "shunt feed", SRPP, "mu followers", and the like. Which should I use? What's the difference?
Parallel feed and shunt feed are the same technique. Basically, a choke is used to load the power tube (usually one, in SE mode), while the output transformer is coupled to the plate of the tube through a capacitor. So, the plate current of the tube does not flow through the output transformer. This can be a very expensive technique to implement, since the choke must be as carefully wound as the output transformer. It does offer a possible performance improvement. You should try to audition a parallel-feed high-end amp before buying it. This technique is considered too expensive for use in guitar amps.
SRPP circuits and mu-follower circuits are special designs which use a lower tube (for gain), and an upper tube which serves as the plate load for the lower tube. The upper tube also acts as both a cathode follower and as a constant-current source for the lower tube. If properly designed, either circuit can offer improved performance over an ordinary resistor-loaded tube stage. These circuits are used only in preamp stages and in the driver stages of power amps, usually SE types, in high-end audio. If you want to build your own, see Technical Bulletin 27 for a good-quality mu-follower circuit that can be used as a line stage preamp or a power-amp driver.
If you want to learn more of the technical details behind vacuum-tube electronic design, we recommend the following books.
We recommend two recently-published books on circuit design, which the novice can derive much information from:
THE BEGINNER'S GUIDE TO TUBE AUDIO DESIGN, by Bruce Rozenblit (ISBN 1-882580-13-3);
and PRINCIPLES OF POWER, by Kevin O'Connor (ISBN 0-9698-6081-1).
Classic textbooks on tube audio design which were recently reprinted are:
THE RADIO DESIGNER'S HANDBOOK, by Langford-Smith (ISBN 1-7506-3635-1);
FUNDAMENTALS OF RADIO-VALVE TECHNIQUE, by J. Deketh (ISBN 1-8825-8023-0); and PRINCIPLES OF ELECTRON TUBES by Herbert Reich (ISBN 1-882580-07-9).
These books are more advanced and are not recommended for the novice. They are available from Old Colony Sound Lab, Antique Electronic Supply or other book dealers.
-A web site with much technical information about vacuum tubes is http://cernan.ecn.purdue.edu/~busenitz/vac.html
-If you want to learn more about tube materials and processes, the American Institute of Physics currently publishes two classic books that are chock-full of advanced information: HANDBOOK OF MATERIALS AND TECHNIQUES FOR VACUUM DEVICES, by Walter Kohl (ISBN 1-56396-387-6); and HANDBOOK OF ELECTRON TUBE AND VACUUM TECHNIQUES, by Fred Rosebury (ISBN 1-56396-121-0).
All of the books are available from large book dealers and from some of our audio-tube Stocking Distributors.
Information from www.vacuumtubes.net
5/12/09
USING TUBES(Part II)
USING TUBES(Part I)
A. Bias
Bias is a negative voltage applied to a power tube's control grid, to set the amount of idle current the tube draws. It is important to bias a tube to stay within its rated dissipation. Otherwise, you DO NOT need to worry about small deviances from the manufacturer's recommendations. Many times we have customers asking us things like, "I replaced the tubes, the old tubes ran at 35 mA, the new ones run at 38 mA. I'm worried that I have to rebias the amp." This is NOT worth worrying about. Especially with guitar amps--they tend to run their tubes at idle conditions which are conservative. Some high-end audio amps run their power tubes quite hard--in that case, rebiasing is necessary. Many amps have no bias adjustments at all, and are designed so that you do not need to concern yourself with bias. This includes most Mesa-Boogie guitar amps, most amps using EL84s, and many single-ended triode hi-fi amps. See our Technical Bulletin #7 for more information on biasing guitar amps. We suggest that users consult with the equipment manufacturer, if possible.
B. When should I replace the tubes?
Practically speaking, you should only replace tubes in an audio amplifier when you start to notice changes in the sound quality. Usually the tone will become "dull", and transients will seem to be blunted. Also, the gain of the amplifier will decrease noticeably. This is usually enough of a warning for tube replacement. If the user has very stringent requirements for observing tube weakening, the best way to check tubes is with a proper mutual- conductance-style tube tester. These are still available on the used market; though new ones have not been manufactured in many years. One tester is being manufactured today, the Maxi-Matcher. It is suitable for testing 6L6, EL34, 6550 and EL84 types. If you cannot get your own tube tester, speak to a service technician for his recommendations. See our cathode section 2A above for some idea of typical lifetimes for tubes.
Large ceramic power tubes are usually operated in equipment that has metering of the plate current or power output. When the tube cannot reach the rated plate current or power output for the equipment, the tube is usually considered to be at the end of its normal life. The operating manual should give a more complete procedure for estimating the health of the tube.
C. Blue Glow -- what causes it?
Glass tubes have visible glow inside them. Most audio types use oxide-coated cathodes, which glow a cheery warm orange color. And thoriated-filament tubes, such as the SV811 and SV572 triodes, show both a white-hot glow from their filaments and (in some amplifiers) a slight orange glow from their plates. All of these are normal effects. Some newcomers to the tube-audio world have also noticed that some of their tubes emit a bluish-colored glow. There are TWO causes for this glow in audio power tubes; one of them is normal and harmless, the other occurs only in a bad audio tube.
1) Most Svetlana glass power tubes show FLUORESCENCE GLOW. This is a very deep blue color. It can appear wherever the electrons from the cathode can strike a solid object. It is caused by minor impurities, such as cobalt, in the object. The fast-moving electrons strike the impurity molecules, excite them, and produce photons of light of a characteristic color. This is usually observed on the interior of the plate, on the surface of the mica spacers, or on the inside of the glass envelope. THIS GLOW IS HARMLESS. It is normal and does not indicate a tube failure. Enjoy it. Many people feel it improves the appearance of the tube while in operation.
2) Occasionally a tube will develop a small leak. When air gets into the tube, AND when the high plate voltage is applied, the air molecules can ionize. The glow of ionized air is quite different from the fluorescence glow above--ionized air is a strong purple color, almost pink. This color usually appears INSIDE the plate of the tube (though not always). It does not cling to surfaces, like fluorescence, but appears in the spaces BETWEEN elements. A tube showing this glow should be replaced right away, since the gas can cause the plate current to run away and (possibly) damage the amplifier.
PLEASE NOTE: some older hi-fi and guitar amplifiers, and a very few modern amplifiers, use special tubes that DEPEND on ionized gas for their normal operation.
-Some amps use mercury vapor rectifiers, such as types 83, 816, 866 or 872. These tubes glow a strong blue-purple color in normal use. They turn AC power into DC to run the other tubes.
-And occasionally, vintage and modern amplifiers use gas-discharge regulator tubes, such as types 0A2, 0B2, 0C2, 0A3, 0B3, 0C3 or 0D3.
These tubes rely on ionized gas to control a voltage tightly, and normally glow either blue-purple or pink when in normal operation. If you are unsure if these special tubes are used in your amplifier, consult with an experienced technican before replacing them.
ALSO NOTE: these light sources cannot be seen in metal-ceramic tubes, because their parts are opaque. As we said above, it is difficult to tell if a ceramic tube has become gassy. Usually, in a large radio transmitter, a gassy tube will arc over internally. (This does not damage the transmitter. It has protective circuits.) The equipment operating manual should give more information on this.
Information from www.vacuumtubes.net
WHY ARE TUBES STILL USED?
A. High-power RF applications
Many big radio stations continue to use big power tubes, especially for power levels above 10,000 watts and for frequencies above 50 MHz. High-power UHF TV stations and large FM broadcast stations are almost exclusively powered by tubes. The reason is cost and efficiency--only at low frequencies are transistors more efficient and less expensive than tubes.
Making a big solid-state transmitter requires wiring hundreds or thousands of power transistors in parallel in groups of 4 or 5 at a time, then mixing their power outputs together in a cascade of combiner transformers. Plus, they require large heat-sinks to keep them cool. An equivalent tube transmitter can use only one tube, requires no combiner (which wastes some power), and can be cooled with forced air or water, thus making it smaller than the solid-state transmitter.
This equation becomes even more pronounced at microwave frequencies. Nearly all commercial communication satellites use a traveling-wave tube for their "downlink" power amplifiers. The "uplink" ground stations also use TWTs. And for high power outputs, the tube seems to reign unchallenged. Exotic transistors still are used only for small-signal amplification and for power outputs of less than 40 watts, even after considerable advances in the technology. The low cost of RF power generated by tubes has kept them economically viable, in the face of advancing science.
B. Guitar amps
In general, only very low-cost guitar amplifiers (and a few specialized professional models) are predominantly solid-state. We have estimated that at least 80% of the market for high-ticket guitar amps insists on all-tube or hybrid models. Especially popular with serious professional musicians are modern versions of classic Fender, Marshall and Vox models from the 1950s and 1960s. This business is thought to represent at least $100 million worldwide as of 1997.
Why tube amplifiers? It's the tone that musicians want. The amplifier and speaker become part of the musical instrument. The peculiar distortion and speaker-damping characteristics of a beam-tetrode or pentode amp, with an output transformer to match the speaker load, is unique and difficult to simulate with solid-state devices, unless very complex topologies or a digital signal processor are used. These methods apparently have not been successful; professional guitarists keep returning to tube amplifiers.
Even the wildest rock musicians seem to be very conservative about the actual equipment they use to make their music. And their preferences keep specifying the proven technology of vacuum tubes.
C. Professional audio
The recording studio is somewhat influenced by the prevalence of tube guitar amps in the hands of musicians. Also, classic condenser microphones, microphone preamplifiers, limiters, equalizers and other devices have become valuable collectibles, as various recording engineers discover the value of tube equipment in obtaining special sound effects. The result has been huge growth in the sales and advertising of tube- equipped audio processors for recording use. Although still a minor movement within the multi-billion-dollar recording industry, tubed recording-studio equipment probably enjoys double-digit sales growth today.
D. High-end audio
At its low point in the early 1970s, the sales of tube hi-fi equipment were barely detectable against the bulk of the consumer-electronics boom. Yet even in spite of the closure of American and European tube factories thereafter, since 1985 the sales of "high-end" audio components have boomed. And right along with them have boomed the sales of vacuum-tube audio equipment for home use. The use of tubes in this regime has been very controversial in engineering circles, yet the demand for tube hi-fi equipment continues to grow.
E. For more information
See my cover article about the growth of modern tube audio, in the August 1998 issue of IEEE SPECTRUM magazine. It is available online at http://www.spectrum.ieee.org/select/0898/tube.html, and will shortly be available on the Svetlana website as technical bulletin number 39. For more information about why tubes are still used in high-power and high-frequency RF applications, see the article by Robert Symons in the April 1998 issue of IEEE SPECTRUM, page 52.
Information from www.vacuumtubes.net